Lesson 20. Bounds and the Dual LP

1 Overview

- It is often useful to quickly generate lower and upper bounds on the optimal value of an LP
- Many algorithms for optimization problems that consider LP "subproblems" rely on this
- How can we do this?

2 Finding lower bounds

Example 1. Consider the following LP:

$$
\begin{align*}
z^{*}=\operatorname{maximize} & 2 x_{1}+3 x_{2}+4 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}+5 x_{3} \leq 18 \tag{1}\\
& 5 x_{1}+4 x_{2}+3 x_{3} \leq 16 \tag{2}\\
& x_{1}, x_{2}, x_{3} \geq 0 \tag{3}
\end{align*}
$$

Denote the optimal value of this LP by z^{*}. Give a feasible solution to this LP and its value. How does this value compare to z^{*} ?

Feasible Solution	Value
$(1,1,1)$	9
$(1,2,1)$	12
$(0,2,2)$	14
each of these	
values is $\leq z^{*}$	

- For a maximization LP, any feasible solution gives a lower bound on the optimal value
- We want the highest lower bound possible (i.e. the lower bound closest to the optimal value)

3 Finding upper bounds

- We want the lowest upper bound possible (ie. the upper bound closest to the optimal value)
- For the LP in Example 1, we can show that the optimal value z^{*} is at most 27
- Any feasible solution (x_{1}, x_{2}, x_{3}) must satisfy constraint (1)
\Rightarrow Any feasible solution (x_{1}, x_{2}, x_{3}) must also satisfy constraint (1) multiplied by $3 / 2$ on both sides:

$$
\begin{aligned}
& \frac{3}{2}\left(3 x_{1}+2 x_{2}+5 x_{3}\right) \leq \frac{3}{2}(18) \\
& \Leftrightarrow \frac{9}{2} x_{1}+3 x_{2}+\frac{15}{2} x_{3} \leq 27
\end{aligned}
$$

- The nonnegativity bounds (3) imply that any feasible solution (x_{1}, x_{2}, x_{3}) must satisfy

$$
2 x_{1}+3 x_{2}+4 x_{3} \leq \frac{9}{2} x_{1}+3 x_{2}+\frac{15}{2} x_{3} \leq 27
$$

- Therefore, any feasible solution, including the optimal solution, must have value at most 27
- We can do better: we can show $z^{*} \leq 25$:
- Any feasible solution (x_{1}, x_{2}, x_{3}) must satisfy constraints (1) and (2)
\Rightarrow Any feasible solution $\left(x_{1}, x_{2}, x_{3}\right)$ must also satisfy $\left(\frac{1}{2} \times\right.$ constraint (1) $)+$ constraint (2):

$$
\begin{gathered}
\frac{1}{2}\left(3 x_{1}+2 x_{2}+5 x_{3}\right)+\left(5 x_{1}+4 x_{2}+3 x_{3}\right) \leq \frac{1}{2}(18)+16 \\
\Leftrightarrow \frac{13}{2} x_{1}+5 x_{2}+\frac{11}{2} x_{3} \leq 25
\end{gathered}
$$

- The nonnegativity bounds (3) then imply that any feasible solution $\left(x_{1}, x_{2}, x_{3}\right)$ must satisfy

$$
2 x_{1}+3 x_{2}+4 x_{3} \leq \frac{13}{2} x_{1}+5 x_{2}+\frac{11}{2} x_{3} \leq 25
$$

Example 2. Combine the constraints (1) and (2) of the LP in Example 1 to find a better upper bound on z^{*} than 25.

$$
\begin{aligned}
& \text { Any feasible solution }\left(x_{1}, x_{2}, x_{3}\right) \text { must satisfy } \\
& \begin{array}{l}
\frac{1}{2}(1)+\frac{1}{2}(2):
\end{array} \begin{array}{l}
z^{*}=\text { maximize } \\
\text { subject to }
\end{array} \begin{array}{l}
2 x_{1}+3 x_{2}+4 x_{3} \\
3 x_{1}+2 x_{2}+5 x_{3} \leq 18 \\
5 x_{1}+4 x_{2}+3 x_{3} \leq 16 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array} \\
& \left.\Leftrightarrow 4 x_{1}+2 x_{2}+5 x_{3}\right)+\frac{1}{2}\left(5 x_{1}+4 x_{2}+3 x_{3}\right) \leq \frac{1}{2}(18)+\frac{1}{2}(16) \\
& (3) \Rightarrow \text { any feasible solution }\left(x_{1}, x_{2}, x_{3}\right) \text { must satisfy } \\
& 2 x_{1}+3 x_{2}+4 x_{3} \leq 4 x_{1}+3 x_{2}+4 x_{3} \leq 17
\end{aligned}
$$

- Let's generalize this process of combining constraints
- Let y_{1} be the "multiplier" for constraint (1), and let y_{2} be the "multiplier" for constraint (2)
- We require $y_{1} \geq 0$ and $y_{2} \geq 0$ so that multiplying constraints (1) and (2) by these values keeps the inequalities as " \leq "
- We also want:

$$
\begin{aligned}
z^{*}=\text { maximize } & 2 x_{1}+3 x_{2}+4 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}+5 x_{3} \leq 18 \quad \text { (1) } y_{1} \\
& 5 x_{1}+4 x_{2}+3 x_{3} \leq 16 \quad \text { (2) } y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 y_{1}+5 y_{2} \geqslant 2 \\
& 2 y_{1}+4 y_{2} \geq 3 \\
& 5 y_{1}+3 y_{2} \geqslant 4
\end{aligned}
$$

- Since we want the lowest upper bound, we want:

$$
\min 18 y_{1}+16 y_{2}
$$

- Putting this all together, we can find the multipliers that find the best lower upper bound with the following LP!

$$
\begin{array}{ll}
\operatorname{minimize} & 18 y_{1}+16 y_{2} \\
\text { subject to } & 3 y_{1}+5 y_{2} \geq 2 \\
& 2 y_{1}+4 y_{2} \geq 3 \\
& 5 y_{1}+3 y_{2} \geq 4 \\
& y_{1} \geq 0, y_{2} \geq 0
\end{array}
$$

- This is the dual LP, or simply the dual of the LP in Example 1
- The LP in example is referred to as the primal LP or the primal - the original LP

4 In general...

- Every LP has a dual
- For minimization RPs
- Any feasible solution gives an upper bound on the optimal value
- One can construct a dual LP to give the greatest lower bound possible
- We can generalize the process we just went through to develop some mechanical rules to construct duals

5 Constructing the dual LP

0 . Rewrite the primal so all variables are on the LHS and all constants are on the RHS

1. Assign each primal constraint a corresponding dual variable (multiplier)
2. Write the dual objective function

- The objective function coefficient of a dual variable is the RHS coefficient of its corresponding primal constraint
- The dual objective sense is the opposite of the primal objective sense

3. Write the dual constraint corresponding to each primal variable

- The dual constraint LHS is found by looking at the coefficients of the corresponding primal variable ("go down the column")
- The dual constraint RHS is the objective function coefficient of the corresponding primal variable

4. Use the SOB rule to determine dual variable bounds ($\geq 0, \leq 0$, free) and dual constraint comparisons ($\leq, \geq,=$)

	max LP	\leftrightarrow	\min LP	
sensible	\leq constraint	\leftrightarrow	$y_{i} \geq 0$	sensible
odd	$=$ constraint	\leftrightarrow	y_{i} free	odd
bizarre	\geq constraint	\leftrightarrow	$y_{i} \leq 0$	bizarre
sensible	$x_{i} \geq 0$	\leftrightarrow	\geq constraint	sensible
odd	x_{i} free	\leftrightarrow	$=$ constraint	odd
bizarre	$x_{i} \leq 0$	\leftrightarrow	\leq constraint	bizarre

Example 3. Take the dual of the following LP:

$$
\begin{aligned}
& \text { minimize } 10 x_{1}+9 x_{2}-6 x_{3} \\
& \text { subject to } 2 x_{1}-x_{2} \geq 3 \quad \mathrm{~S} \quad y_{1} \\
& 5 x_{1}+3 x_{2}-x_{3} \leq 14 \quad \text { B } \quad y_{2} \\
& x_{2}+x_{3}=1 \quad \bigcirc \quad y_{3} \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \geq 0 \\
& \text { S B S } \\
& \text { Dual: } \max 3 y_{1}+14 y_{2}+y_{3} \\
& \text { set. } \quad 2 y_{1}+5 y_{2}+0 y_{3} \leq 10 s x_{1} \\
& -y_{1}+3 y_{2}+y_{3} \geqslant 9 \text { B } x_{2} \\
& -y_{2}+y_{3} \leqslant-6 \text { s } x_{3} \\
& y_{1} \geqslant 0, y_{2} \leqslant 0, y_{3} \text { free }
\end{aligned}
$$

Example 4. Take the dual of the dual LP you found in Example 3.
Dual of the dual:

$$
\max 3 y_{1}+14 y_{2}+y_{3}
$$

$$
\text { st. } 2 y_{1}+5 y_{2}+0 y_{3} \leq 10 \leq x_{1}
$$

$$
-y_{1}+3 y_{2}+y_{3} \geqslant 9 B x_{2}
$$

$$
-y_{2}+y_{3} \leqslant-6 s x_{3}
$$

$$
\begin{array}{cc}
y_{1} \geqslant 0, & y_{2} \leqslant 0, \\
S & y_{3} \\
\text { free } \\
0
\end{array}
$$

- In general, the dual of the dual is the primal

6 Up next...

- Duality theorems: relationships between the primal and dual LPs

