Lesson 20. Bounds and the Dual LP

1 Overview

- It is often useful to quickly generate lower and upper bounds on the optimal value of an LP
- Many algorithms for optimization problems that consider LP "subproblems" rely on this
- How can we do this?

2 Finding lower bounds

Example 1. Consider the following LP:

 $z^* = \text{maximize} \quad 2x_1 + 3x_2 + 4x_3$

subject to
$$3x_1 + 2x_2 + 5x_3 \le 18$$
 (1)

 $5x_1 + 4x_2 + 3x_3 \le 16 \tag{2}$

$$x_1, x_2, x_3 \ge 0 \tag{3}$$

Denote the optimal value of this LP by z^* . Give a feasible solution to this LP and its value. How does this value compare to z^* ?

- For a maximization LP, any feasible solution gives a lower bound on the optimal value
- We want the highest lower bound possible (i.e. the lower bound closest to the optimal value)

3 Finding upper bounds

- We want the lowest upper bound possible (i.e. the upper bound closest to the optimal value)
- For the LP in Example 1, we can show that the optimal value z^* is at most 27
 - Any feasible solution (x_1, x_2, x_3) must satisfy constraint (1)
 - \Rightarrow Any feasible solution (x_1, x_2, x_3) must also satisfy constraint (1) multiplied by 3/2 on both sides:

$$\frac{3}{2}(3x_1 + 2x_2 + 5x_3) \le \frac{3}{2}(18)$$

$$(=) \frac{9}{2}x_1 + 3x_2 + \frac{15}{2}x_3 \le 27$$

• The nonnegativity bounds (3) imply that any feasible solution (x_1, x_2, x_3) must satisfy

$$2x_1 + 3x_2 + 4x_3 \leq \frac{1}{2}x_1 + 3x_2 + \frac{15}{2}x_3 \leq 27$$

- Therefore, any feasible solution, including the optimal solution, must have value at most 27
- We can do better: we can show $z^* \leq 25$:
 - Any feasible solution (x_1, x_2, x_3) must satisfy constraints (1) and (2)
 - ⇒ Any feasible solution (x_1, x_2, x_3) must also satisfy $\left(\frac{1}{2} \times \text{constraint (1)}\right)$ + constraint (2):

$$\frac{1}{2}(3x_1 + 2x_2 + 5x_3) + (5x_1 + 4x_2 + 3x_3) \leq \frac{1}{2}(18) + 16$$

$$\langle = \rangle \frac{13}{2}x_1 + 5x_2 + \frac{11}{2}x_3 \leq 25$$

• The nonnegativity bounds (3) then imply that any feasible solution (x_1, x_2, x_3) must satisfy

$$2x_1 + 3x_2 + 4x_3 \le \frac{13}{2}x_1 + 5x_2 + \frac{11}{2}x_3 \le 25$$

Example 2. Combine the constraints (1) and (2) of the LP in Example 1 to find a better upper bound on z^* than 25.

Any feasible solution
$$(x_1, x_2, x_5)$$
 must satisfy
 $\frac{1}{2}(1) + \frac{1}{2}(2)$:
 $\frac{1}{2}(1) + \frac{1}{2}(2)$:
 $\frac{1}{2}(3x_1 + 2x_2 + 5x_5) + \frac{1}{2}(5x_1 + 4x_2 + 3x_5) \le \frac{1}{2}(18) + \frac{1}{2}(16)$
 $(=) 4x_1 + 3x_2 + 4x_3 \le 17$
 $(3) = 2$ any feasible solution (x_1, x_2, x_3) must satisfy
 $2x_1 + 3x_2 + 4x_3 \le 4x_1 + 3x_2 + 4x_3 \le 17$
 $2x_1 + 3x_2 + 4x_3 \le 4x_1 + 3x_2 + 4x_3 \le 17$
 $= 2 + \frac{2}{2} + \frac{2}{2}$

- Let's generalize this process of combining constraints
- Let y_1 be the "multiplier" for constraint (1), and let y_2 be the "multiplier" for constraint (2)
- We require $y_1 \ge 0$ and $y_2 \ge 0$ so that multiplying constraints (1) and (2) by these values keeps the inequalities as " \le "

 $z^* = \text{maximize} \quad 2x_1 + 3x_2 + 4x_3$

subject to $3x_1 + 2x_2 + 5x_3 \le 18$ (1)

 $x_1, x_2, x_3 \ge 0$

 $5x_1 + 4x_2 + 3x_3 \le 16$ (2)

• We also want:

- $3y_1 + 5y_2 \ge 2$ $2y_1 + 4y_2 \ge 3$ $5y_1 + 3y_2 \ge 4$
- Since we want the lowest upper bound, we want:

• Putting this all together, we can find the multipliers that find the best lower upper bound with the following LP!

```
minimize 18y_1 + 16y_2
subject to 3y_1 + 5y_2 \ge 2
2y_1 + 4y_2 \ge 3
5y_1 + 3y_2 \ge 4
y_1 \ge 0, y_2 \ge 0
```

- This is the dual LP, or simply the dual of the LP in Example 1
- The LP in example is referred to as the primal LP or the primal the original LP

4 In general...

- Every LP has a dual
- For minimization LPs
 - Any feasible solution gives an upper bound on the optimal value
 - One can construct a dual LP to give the greatest lower bound possible
- We can generalize the process we just went through to develop some mechanical rules to construct duals

5 Constructing the dual LP

- 0. Rewrite the primal so all variables are on the LHS and all constants are on the RHS
- 1. Assign each primal constraint a corresponding **dual variable** (multiplier)
- 2. Write the dual objective function
 - The objective function coefficient of a dual variable is the RHS coefficient of its corresponding primal constraint
 - The dual objective sense is the opposite of the primal objective sense
- 3. Write the dual constraint corresponding to each primal variable
 - The dual constraint LHS is found by looking at the coefficients of the corresponding primal variable ("go down the column")
 - The dual constraint RHS is the objective function coefficient of the corresponding primal variable
- 4. Use the **SOB rule** to determine dual variable bounds ($\geq 0, \leq 0$, free) and dual constraint comparisons ($\leq, \geq, =$)

	max LP	\leftrightarrow	min LP	
sensible	≤ constraint	\leftrightarrow	$y_i \ge 0$	sensible
odd	= constraint	\leftrightarrow	y_i free	odd
bizarre	\geq constraint	\leftrightarrow	$y_i \leq 0$	bizarre
sensible	$x_i \ge 0$	\leftrightarrow	≥ constraint	sensible
odd	x_i free	\leftrightarrow	= constraint	odd
bizarre	$x_i \leq 0$	\leftrightarrow	\leq constraint	bizarre

Example 3. Take the dual of the following LP:

- 4

$$-\frac{1}{2} + \frac{1}{3} \leq -6$$
 s
 $y_1 \geq 0, \ y_2 \leq 0, \ y_3$ free
 $\leq B = 0$

23

Example 4. Take the dual of the dual LP you found in Example 3.

Dual of the dual: $min \quad 10x_{1} + 9x_{2} - 6x_{3}$ s.t. $2x_{1} - x_{2} + 0x_{3} \ge 3 \quad y_{1} \leq 10 \quad s \quad x_{1}$ $-y_{1} + 3y_{2} + y_{3} \le 10 \quad s \quad x_{1}$ $-y_{1} + 3y_{2} + y_{3} \le 9 \quad B \quad x_{2}$ $-y_{2} + y_{3} \leq -6 \quad s \quad x_{3}$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad x_{3})$ $(-y_{1} + 3y_{2} + y_{3} \leq -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{2} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y_{3} + y_{3} = -6 \quad s \quad s_{3})$ $(-y_{1} + 3y$

• In general, the dual of the dual is the primal

6 Up next...

• Duality theorems: relationships between the primal and dual LPs